
Università degli Studi dell’Aquila Università degli Studi dell’Aquila

Software Engineering and Architecture Group

Information Engineering, Computer Science and Mathematics Department,

 University of L’Aquila, Italy

Paola Inverardi

25 Gennaio 2013, VAMOS, Pisa

Dipartimento di Ingegneria e Scienze

dell’Informazione e Matematica (DISIM)

Objective: Support dependable software evolution

My perspective is a SE one

Variability to Tame uncertainty

Three approaches

Future directions

2

3

Enhancing configuration facilities in software development: A logic
approach (ESEC 1987)
P. Asirelli, P. Inverardi IEI-CNR PISA
Abstract
The paper focuses on the suitability and advantages of a Logic Data Base
approach to manage configurational aspects within Programming
Environments. It describes part of a work which proposes Logic Data
Bases as effective tools to be integrated with existing programming
environments to increase their formalization and automation capabilities.
In order to present the idea and its implications, we discuss, as a practical
example,
the integration of a prototype Logic DBMS (EDBLOG) with a Unix-like
environment for configuration management. In that framework, a
possible realization of the Make facility is shown. The advantages of the
proposed approach are mainly concerned with the easiness of extension
of the programming environment and of the configuration environment
to deal with concepts which, in general, are very expensive to provide, e.g.
histories and versions management.

http://link.springer.com/search?facet-author="P.+Asirelli"
http://link.springer.com/search?facet-author="P.+Asirelli"
http://link.springer.com/search?facet-author="P.+Inverardi"
http://link.springer.com/search?facet-author="P.+Inverardi"

4

Experimenting with dynamic linking with ADA (Elsevier S&P 1993)

Paola Inverardi, Franco Mazzanti IEI_CNR PISA

Keywords: Ada; Dynamic reconfiguration; Dynamic linking

Abstract An approach to achieving dynamic reconfiguration within the
framework of Ada1 is described. A technique for introducing a kernel
facility for dynamic reconfiguration in Ada is illustrated, and its
implementation using the Verdix VADS 5.5 Ada compiling system on a
Sun3–120 running the 4.3 BSD Unix operating system is discussed. This
experimental kernel allows an Ada program to change its own
configuration dynamically, linking new pieces of code at run-time. It is
shown how this dynamic facility can be integrated consistently at the
Ada language level, without introducing severe inconsistencies with

respect to the Standard semantics.

Ubiquitous software systems have to operate considering
different (unpredictable) variability dimensions:

Heterogeneity of the environment

Changing user needs

(Self-)adaptive systems provide means to adjust their behavior
in response to changes in the self and in the context:

Self is the whole body of software, as represented in the
whole set of artifacts that characterize the development
and operation of the system (e.g. new requirements)

Context is everything in the operating environment that
affects the system properties and behavior

6

Foreseen Evolution:

foreseen context variations selecting the most
suitable variant[MoLi11] among the variants that are statically
defined

Unforeseen Evolution:

unforeseen context variation switching towards an
un-anticipated system variant which satisfies a new
requirement (@ run-time)

[MoLi11] M. Mori, F. Li, C. Dorn , P. Inverardi, S. Dustdar. “Leveraging State-based User Preferences in

Context-aware Reconfigurations for Self-adaptive Systems”. International Conference in Software

Engineering and Formal Methods (SEFM). Montevideo, 2011

Many ways at different system’s abstractions and granularity

(from requirements, to architecture, to code)

E.g. Software designer defines a set of software alternatives at
design time for different known context

At run-time the system autonomously adopts the best variant
based on the current context

Context determines which variants are admissible and it
helps to find the best reconfiguration possible

But…

Contexts are not completely known at design time

Moreover…

At run-time, as a consequence of unforeseen environmental
conditions new requirements may arise, thus:

the space of software alternatives must be augmented

To prevent system incorrect behaviors, evolution has to be
supported by validation mechanisms

At design time: through validation of the known software
alternatives

At run-time: through validation of new software alternatives

(High-)assurance for adaptive systems:

“(high-)assurance provides evidence that the system satisfies
continuously its functional or non-functional requirements
thus maintaining the user’s expectations despite predictable
and unpredictable context variations”

• A Framework to Support Consistent Design and Evolution of

Adaptive Systems

• Variability at feature/component level foreseen and
unforseen

• Consistency of the configuration wrt requirements design and
run time

• Chamaleon for adaptable system

• Variability at programming level (adaptable classes) only
foreseen

• Consistency of the configuration wrt the context available
resources deployment time

• Service Choreography

• Variability at the service level

• Consistency wrt the role required for the service behavior

System variability is expressed following the Software Product Line
Engineering perspective (SPLE)

The single unit, the so called feature, represents the smaller part of a
service that can be perceived by a user

Features are combined into configurations in order to produce the
space of system alternatives

Inspired by SPLE we adopt the notion of feature interaction
phenomenon as notion of high-assurance

A system configuration shows a feature interaction phenomena if its
features run correctly in isolation but they give rise to undesired
behavior when jointly executed

[InMorCycle12] P. Inverardi and M. Mori. A software lifecycle process to support consistent evolutions. ”,

2nd book on Software Engineering for Self-Adaptive Systems, 2012.

[AuDiIn11] M. Autili, D. di Ruscio, P. Inverardi, P. Pelliccione, M. Tivoli, and V. Cortellessa.EAGLE:

Engineering softwAre in the ubiquitous Globe by Leveraging uncErtainty. new ideas track esec, 2011

E-Health distributed application to monitor vital parameters
belonging to elderly people

Probes sense patient information whereas the home gateway
transmit them to the hospital

Doctors visualize the trends of pulse oximetry and heart rate
through PDA and desktop devices

Adaptive behavior:
Set of system alternatives to visualize the vital parameters at the doctor’s

device as textual or graphical representation (possibly real-time)

Each alternative

has a different requirements specification

consumes a certain amount of resources to be provided by the environment (e.g.
memory, CPU, etc…)

Server

Residential
Gateway (Patient)

Monitoring System
(Probes) Adaptive Application Adaptive Application

(Doctor)

14

•Portion of the environment that is beyond the control of the system but
may affect its behavior

•Entails the set of entities (key-value pairs)

•Two perspective:

• Context structure: set of entities with context type (System, User, Physical) and
type (Bool, Enum, Nat)

• Context space: set of valid assignments for the entities
Context state:

)(ityContextEntdomSSc


•Space of software alternatives

•Each alternative is a different combination of features
(configuration)

•We define a feature as a triples (R,I,C) [CIHe08] [GL07] where:

• R is a functional, performance or quality requirement (context
independent)

• I is the code implementation (e.g., Java)

• C: constraint requirement (context dependent)

•A configuration is obtained by combining a
subset of features F
•We assume to have an abstract union operator to combine
features, which is expressed in terms of union operator for R, I and
C

• Given two features and their union is
defined as:

FFFF CIRG ,,

1111 ,, CIRf
2222 ,, CIRf

21211121 ,, CCIIRRff CIRf 

Predicates over context entities

Syntax:

Each expression may be related to a single feature or to a
system variant

<C>::= <ContextEntity><rel-op><value>|<C><log-op><C>
<rel-op>::=≥|≤|>|<|=
<log-op>::=AND|OR
<value>::=<natural>

 If Oxigenation data are available, Receive Oxygenation
rate and View it on the graphic widget - If "OxygenationProbe" then (Each
10 times "getOximetryData" follows a “displayGraph“)

graphOxR

true=nProbeoxygenatio100050graphOx cRatememC

graphOxI public class graphlOxygenationViewer{

 XYDataset oximetryDataset = new XySeriesCollection();

 …

 public void viewGraphicalOximetry (Graph g){

 ….

 for (i=0; i<10; i++){

 XYDataItem dataOx = OximetryRetrieving.getOximetryData();

 dataVectOx.add(dataOx);

 }

 g,displayGraph(dataVectOx);

 }… }

(1/2)

(2/2)

eHealth Application

textOxfartsumgraphHef
textHeartf

tagetHeartDaf graphOxf
getOxDatafsumgraphOxf

graphHeartf

[CE00] Krzysztof Czarnecki and UlrichW. Eisenecker. Generative programming: Methods, Tools and

Applications. Addison-Wesley, 2000

•We adopt the feature interaction phenomenon as our notion of
consistency

•Given a certain variant we define the consistency
as:

• (i) : context requirement satisfiability (context analysis) [InMoRe11]

• (ii) : context independent requirement satisfiability

• (iii) : validates implementation w.r.t the context independent
requirement (model checking or testing) [InMoCh11]

 Consistency check at design time Foreseen Evolution

 Consistency check at run-time Unforeseen Evolution

[InMo11] P. Inverardi and M. Mori. Requirements Models at Run-time to Support Consistent System Evolutions. In
Requirements@Run-time. 2011

[InMoCh11] P. Inverardi and M. Mori. Model checking Requirements at run-time in Adaptive Systems. ASAS, 2011

xcCF

/

FRFI

FR

FF CI ,
FR

),,(FFFF CIRG

EVOLUTION EXAMPLES: 3 CHAMELEON
A framework for the development and deployment of adaptable Java

applications

Marco Autili, Paolo Di Benedetto and Paola Inverardi Hybrid Approach for

Resource-based Comparison of Adaptable Java Applications.
Science of Computer Programming (SCP) - 2012,
DOI: http://dx.doi.org/10.1016/j.scico.2012.01.005

Marco Autili, Paolo Di Benedetto, Paola Inverardi: Context-Aware Adaptive
Services: The PLASTIC Approach. FASE 2009: 124-139

Marco Autili, Paolo Di Benedetto, Paola Inverardi, Fabio Mancinelli: A Resource-
Oriented Static Analysis Approach to Adaptable Java Applications. COMPSAC
2008: 1329-1334

Fabio Mancinelli, Paola Inverardi: Quantitative resource-oriented analysis of
Java (Adaptable) applications. WOSP 2007: 15-25

http://dx.doi.org/10.1016/j.scico.2012.01.005
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Autili:Marco.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Autili:Marco.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Benedetto:Paolo_Di.html
http://www.informatik.uni-trier.de/~ley/db/conf/fase/fase2009.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Autili:Marco.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Autili:Marco.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Benedetto:Paolo_Di.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Benedetto:Paolo_Di.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mancinelli:Fabio.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mancinelli:Fabio.html
http://www.informatik.uni-trier.de/~ley/db/conf/compsac/compsac2008.html
http://www.informatik.uni-trier.de/~ley/db/conf/compsac/compsac2008.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mancinelli:Fabio.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mancinelli:Fabio.html
http://www.informatik.uni-trier.de/~ley/db/conf/wosp/wosp2007.html

• A programming model to develop adaptable applications
reducing redundancy and promoting maintenance

• Models to represent and reason on resources
• An abstract analyzer that is able to estimate applications

resource consumptions

• An integrated framework that enables the development,
discovery and deployment of adaptable applications and
services.

 Resource-aware adaptation
 The applications used to provide and/or consume services are

implemented as “generic” code that, at discovery time, can be
customized (i.e., tailored) to run correctly on the actual
execution context.

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

 Programming Model: permits to implement applications in terms of

generic code (extension to the Java language)

 core code + adaptable code

 Preprocessor: derives from the generic code a set of application

alternatives, i.e., different standard Java components that represent

different ways of implementing the same service.

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

adaptable class C {
 adaptable void m1 () ;
 adaptable void m2 () ;
}

alternative class A1 adapts C {
 void m1() { . . . }
 void s1 () { . . . }
}

alternative class A2 adapts C {
 void m1() { . . . }
}

alternative class A3 adapts C {
 void m2() { . . . }
}

alternative class A4 adapts C {
 void m1() { . . . }
 void m2() { . . . }
}

class C {
 void m1 () { . . . } // from A2
 void m2 () { . . . } // from A3
}

class C {
 void m1 () { . . . } // from A1
 void s1() { . . . } // from A1
 void m2 () { . . . } // from A3
}

class C {
 void m1 () { . . . } // from A4
 void m2 () { . . . } // from A4
}

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

 C.1 { A1.m1(); A1.s1(); A3.m2() }

 C.2 { A2.m1(); A3.m2() }

 C.3 { A4.m1(); A4.m2() }

 C.4 { B1.m1(); B2.m3(); A3.m2() }

 C.5 { B1.m1(); B3.m3(); A3.m2() }

 C.6 { D1.m1(); D2.m2() }

 C.7 { D1.m1(); D3.m2() }

 C.8 { tag(T1)E.m1(); A3.m2() }

 C.9 { A1.m1(); A1.s1(); tag(T2; T5)F.m2() }

 C.10 { A2.m1(); tag(T2; T5)F.m2() }

 C.11 { B1.m1(); B2.m3(); tag(T2; T5)F.m2() }

 C.12 { B1.m1(); B3.m3(); tag(T2; T5)F.m2() }

C

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

Resource Model: formal model for resources

Resource: entity required to accomplish an activity/task.

CHAMELEON Resources as typed identifiers:

Natural for consumable resources (Battery, CPU,...)
Boolean for non consumable resources that can be present or not

(API, network radio interface, ...)
Enumerated for non consumable resources that admits a limited

set of values (screen resolution, …)

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

Resource Instance

 Association resource(value)

e.g. Bluetooth(true)

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

Resource Set

a set of resource instances, with no

resource occurring more than once

Resource Sets are used to specify
 Resource Supply: {Bluetooth(true), Resolution(low), Energy(30)}

 Resource Demand: {Bluetooth(true), Resolution(high)}

 Used to determine if an application can run safely on the execution environment

 A resource set (demand) P is compatible with a resource set (supply) Q (P  Q) if:

1. (Availability) For every resource instance r(x) P there exists a resource

instance r(y) Q.

2. (Wealth) For every pair of resource instances r(x) P and r(y) Q, p(x) ≤ p(y).

 A resource sets family (demand) P is compatible with a resource set (supply) Q, if Pi 

Q, Pi P.

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

 used to choose the best compatible application alternative w.r.t. a given

execution context

 based on a notion of priority (P) among resources that expresses the

“importance” given to a particular resource consumption

 P:ResourcesInteger.

 P(r) < 0  the less r is consumed the better is (e.g., Energy).

 P(r) = 0  the consumption of resource r is ininfluent (Bluetooth)

 P(r) > 0  the more r is consumed the better it is (e.g., Thread)

Goodness

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

 Statically analyzes each application alternative
 impact that bytecode instructions have on resources

 Abstracts a standard Java Virtual Machine
 Derives the Resource Demand (and the Code-embedded SLS)
 Worst case analysis based on the resource consumption

profile

Provides the description of the characteristics of a specific
execution environment
Specifies the impact that Java bytecode instructions (patterns)
have on resources

Can be created on the basis of:
experimental results based on benchmarking tools

Information provided by device manufacturers, network sensors …

Always exists a default Resource Consumption Profile
The more are accurate, the more the analysis is precise

1) istore_1 → {CPU(2)} 2) invoke.* → {CPU(4)}

3) .* → {CPU(1), Energy(1)}

4) invokestatic LocalDevice.getLocalDevice() → {Bluetooth(true), Energy(20)}

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

0: aload_0
1: get field isPowerOnZ
2: ifeq −> 6
3: invokestatic LocalDevice.getLocalDevice()
4: astore_1
5: goto −> 10
6: aload_0
7: get field screenLScreen ;
8: ldc ” Please swi tch on Bluetooth ”
9: invokevirtual display.out (Ljava/lang/St r i n g)
10: return

 e, b, m, 0,

 e, b, m, 1, {CPU(2), Energy (1)}

 e, b, m, 2, {CPU(3), Energy (2)}

1) aload_0  {CPU(2)} 3)* {Energy(1), CPU(1)}

2) invokestatic LocalDevice.getLocalDevice()  {Bluetooth(true), Energy(20)}

FORWARD JUMP RULE

 e, b, m, 2, {CPU(3), Energy (2)} 0: aload_0
1: get field isPowerOnZ
2: ifeq −> 6
3: invokestatic LocalDevice.getLocal … ;
4: astore_1
5: goto −> 10
6: aload_0
7: get field screenLScreen ;
8: ldc ” Please swi tch on Bluetooth ”
9: invokevirtual display.out …….
10: return

 r' = {CPU(4), Energy (3)}

Rb1 = {CPU(8), Energy (26), Bluetooth(true)}

Rb2 = {CPU(10), Energy (8)}

R= Rb1 Rb2 = { {CPU(8), Energy (26), Bluetooth(true)} ,

 {CPU(10), Energy (8)} }

Architecture  Development Env.  Resource Model  Customizer  Analyzer  Validation

 Compares the resource demand of the alternatives with the

resources supplied by the execution context

 Determines the application alternatives that can run safely in the

execution context (i.e., compatibility)

 The selected application alternative is then deployed (via OTA)

Adaptation is restricted at discovery time, that is at the moment
in which the service execution context and the user QoS
preferences are known

cost effective and suitable also for limited devices

unpredictable context changes might invalidate the SLA
a re-negotiation of the SLA is necessary

services need to be adapted at run-time

Note it is aimed at selecting alternatives not at
measuring absolute consume of resources!

What about providing self-evolving services?

CHOREOS: LARGE SCALE CHOREOGRAPHIES FOR THE

FUTURE INTERNET
FP7-ICT-2009-5 COLLABORATIVE PROJECT

• CHOReOS introduces a dynamic development process,
and associated methods, tools and middleware
sustaining the ever-adaptable composition of services
by domain experts being the users of business
choreographies in the Future Internet

• M. Autili, D. Di Ruscio, A. Di Salle, P. Inverardi, M. Tivoli A Model-
Based Synthesis Process for Choreography Realizability Enforcement,
FASE 2013, LNCS 7793 to appear

• All references on Synthesis project

BPMN2 CHOREOGRAPHY EXAMPLE

Receiving participant Receiving participant

Initiating participant Initiating participant

CHOREOGRAPHY VARIABILITY POINTS

• A choreography specification has variability points
related to the notion of participant roles

• For each participant, a role specifies the
interaction behavior that a service has to support in

order to be able to play the role of the participant

in the choreography

• For a given participant, its role can be obtained

through projection

FROM BPMN2 TO CLTS

FROM BPMN2 TO CLTS

For coordination purposes, the

BPMN2 specification is transformed

to an extended LTS, called

Choreography LTS (CLTS)

CHOREOGRAPHY LTS (CLTS)

A CLTS is an LTS that, for coordination purposes, is suitably extended

with fork and join constructs, conditional branching and loops.

FROM SPECIFICATION TO EXECUTION

CHOReOS distinguishes:

• Generative approaches

• services are aptly developed for the specific choreography

• Non generative approaches

• services are discovered from a service registry

• the discovery phase retrieves those services whose behaviors

(specified as CLTSs) is compatible with the roles as extracted

from the choreography through projection

• to check compatibility, a suitable notion of simulation is applied

to extended LTSs

Choreography CLTS Participant roles

CHOREOGRAPHY PROJECTION

DISCOVERY THROUGH SIMULATION

Service

Simulation and

Selection

Selected service

Set of concrete
candidate services

for a given participant
role

Service

Discovery

Given a Participant role

Variability points Variability points

•Evolving systems in the Ubiquitous world
• unpredictable evolutions
• assurance/dependability

Explicit variability confines evolution in precise boundaries and helps

controlling unpredictability by making analysis possible

Explicit variability classicaly describes what is going to change

A complementary approach is to establish variability implicitely by

determining what is NOT going to change

 Purely constrained approaches make analysis easier but less control on

the variants

Trade off in between generality and precision

